MURKY ACS Software to Determine 3 Axis Attitude Without the Star Tracker

Sam Sirlin Tony Vanelli Sanjay Joshi Jim Alexander John Hench

May 1, 2000

Review Objectives

- Independant peer review of the effort
- How workable is the proposed solution?
- What improvements should be made?
- Concentrate on flight code, as opposed to ops or ground support.

Presentation Overview

1:30-2:00 Overview

Sam Sirlin

2:00-2:45 Estimator

Sanjay Joshi

2:45-3:30 Star ID

Jim Alexander

3:30-4:00 Discussion

The Spacecraft z, MICAS y, Panel Gimbals Ion Engine Thrust

x, SSA, HGA

The Problem

- No measurements from the SRU
- o Need at least 2 celestial references to determine attitude
- Available equipement
 - 1 SSA, good to 0.5° , FOV $\pm 64^{\circ}$
 - IMU, bias $< 3^{\circ}/hr$, stable to $0.35^{\circ}/hr$ over 1hr
 - MICAS, CCD FOV $\sim 0.75^{\circ}$, various light problems; readout time about 20s.
 - MICAS, APS FOV $\sim 0.25^{\circ}$, various light problems; readout time about 2s.
 - AGC, apparently good to $\sim 5^{\circ}$; has been used to close the loop through the ground and maintain HGA lock.

MICAS CCD

- \circ The field of view is $0.75 \times -.75^{\circ}$, divided into 1024×1024 pixels (about $13 \mu rad/pixel$)
- Stray light is a problem
- \circ The top 1/3 is unusable due to the "blowtorch"
- The rest has various "cloud" formations

A Possible Solution

- Use the sun as one reference (SSA)
- Get one star from MICAS
- Initialize with ground in the loop, either using AGC or processing star data from MICAS
- Near conjunction, we have poor geometry (Sun and Earth are nearly in the same direction), so initialize (if necessary) using data collected with MICAS from a slow roll about the sunline

IMU Biases

- \circ Given bias of $3^{\circ}/hr = 1.45 \times 10^{-5} rad/s$
 - Build up $\Delta\theta = 0.3^{\circ}$ takes 360s = 6min
 - 180° turn must be done at $> 0.5^{\circ}/s = 8.7 \times 10^{-3} rad/s$
- \circ Given perfect bias knowledge, unknown drift of $0.35^{\circ}/hr$
 - Build up $\Delta\theta = 0.3^{\circ}$ takes 4700s = 78min
 - 180° turn must be done at $> 0.038^{\circ}/s = 6.7 \times 10^{-4} rad/s$

Existing ACS Software Architecture

o Code Modules:

- acm attitude commander/profiler

- ape attitude planner

- acs command interface

- ate attitude estimator

- bbc base body controller

- cmt constraint monitor

- gde Gimbal Drive Electronics manager

- imu IMU manager

- mdc mode commander

- rcs RCS manager

- sac solar array controller

- sru SRU manager

- srustandby SRU standby mode

- ssa sun sensor manager

Existing ACS Software Architecture

• Code Modules (continued):

- sunsrch sun search mode

- sunssa sun standby ssa mode

- tvc thrust vector controller

- rcsdv RCS ΔV controller

Existing ACS Software Architecture

New ACS Software Architecture - Status

- We began code development in January
- Now under change control
- The code is running in the testbeds
- Upload to the spacecraft on May 30, 2000

• New Code Modules:

- murky Murky Exec - request images, command turns,

send data to Star ID, communicate with ATE

4400 lines of code

- sid Murky Star ID - process images

3700 lines of code

• Changes to Existing Code Modules:

- ate use the sun sensor, accept various new sensors

2900 lines of code

- sunssa new logic for mode transitions

1500 lines of code

- various new commands, parameters, autogenerated

prototypes, prints, ids etc

 \circ Code size +17655 since M3

SUN STANDBY SSA - extensions

(Continuous Rolls not shown)

 Acquisition - Murky requests two images time (s) event

time (s	
7	clear micas buffer
	2 image requests sent
1-2	exposure $27 - 100ms + \text{overhead}$
	image tagged with current quaternion from ATE
1-2	exposure $27 - 100ms + \text{overhead}$
	image tagged with current quaternion from ATE
20	picture 2 data transfer to flight computer, NAV
10	data processed by NAV to get centroids
	sent back to Murky
20	picture 1 data transfer to flight computer, NAV
10	data processed by NAV to get centroids
	sent back to Murky
-	centroid data available for star ID
	if there is a star, make data available to ATE
69-71	sample time

 Tracking - Murky requests one image 	
time (s) event	
7	clear micas buffer
	image request sent
1-2	exposure $27 - 100ms + \text{overhead}$
	image tagged with current quaternion from ATE
20	picture data transfer to flight computer, NAV
10	data processed by NAV to get centroids
	sent back to Murky
-	centroid data available for star ID
-	if there is a star, make data available to ATE
38-39	sample time

Murky Exec Modes

Double Images

Murky Exec Modes - Acquisition

```
o Acq Init - take one frame, 2 images, get Star ID results.
  Switch to Search can be disabled
  if (star present)
       switch to Acq Track
  else
       switch to Acq Search
• Acq Search - move to new attitude, take one frame, 2 im-
  ages, get Star ID results.
  if (good star present)
       switch to Acq Track
  else
       continue
    - if the search is exhausted
  if (bright enough star present)
       switch to Acq Track
  else
       switch to Search 2
```

Murky Exec Modes - Acquisition

```
• Acq Search2 - take one frame, 2 images, get Star ID results.
      (good star present)
  if
       switch to Acq Track
  else
       continue
    - if the search is exhausted
  if
       (bright enough star present)
       switch to Acq Track
  else
       increment search size, continue
• Acq Track - take one frame, 2 images, get Star ID results.
       (star present)
  if
       continue
  else
       switch to Acq Track Fuzzy
    - if long enough, switch to Track
```

Murky Exec Modes - Acquisition

Acq Track Fuzzy - take one frame, 2 images, get Star ID results.

```
if (star present)
switch to Acq Track
```

else continue

- if too long switch to Acq Init

Murky Exec Modes - Track

Track Ok - take one image, get Star ID results.
if (star present)
 continue
else
 switch to Track Fuzzy
Track Fuzzy - take one image, get Star ID results.
if (star present)
 switch to Track Ok
else
 continue
 - if too long switch to Acq Init

Search Pattern

Search 2×2

Search2 4×2

Search Pattern (continued)

Search 5×3

Search2 6×4

Search Pattern (continued)

• Times

Search 6×4 4901

• About 200 s per frame

Reconciling Star and Sun

- We might not lock up on the right star
- We then have the star and sun in two frames
 - v_J Catalog star
 - v_b Measured star (MICAS)
 - s_J Ephemeris sun
 - s_b Measured sun (SSA); quantized to $1/2^{\circ}$
 - s_b' Estimated sun $q_{ate}(s_J)$
- o But do the sun cone angles agree $v_J \cdot s_J = v_b \cdot s_b$?
- We modify the local star catalog (this can be enabled selectively in different modes)

$$c = v_b \cdot s_b,$$
 $s = \sqrt{1 - c^2},$ $s_1 = v_J - (v_J \cdot s_J)s_J,$ $v_J' = cs_J + ss_1.$

Reconciling Old and New Image Data

- If an old image provides an update to ATE, can we compare a new image to the old image?
- ATE keeps track of measurement updates (from MICAS, from everything) as a δq in J2000
- These δq 's can be passed on to Star ID, for updating old data.

Simulation Results

- KludgeSim non real time, Unix workstation, flight ACS code
 - Initialize using SRU, switch ATE to MICAS mode, turn on Murky, proceed from acquisition to track
 - Initialize using HGA inputs (not using full 30min light time delay)
 - Initialize using SRU, turn on TVC
- o Testbed real time, all flight software, flight computer
 - Initialize using SRU, switch ATE to MICAS mode, turn on Murky, proceed from acquisition to track
 - Initialize using SRU, turn on TVC

Murky KludgeSim Results

$\circ \ \mathbf{TVC}$

Murky Kludgesim Results

• TVC (continued)

Murky Kludgesim Results

• TVC (continued)

Issues

- Bias estimate must be good or we can easily miss the star in the search
- Long term behavior as the sun moves
- Many parameters are available to tune, that have significant effects on the results
- We don't have complete knowledge of noise statistics